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Two-dimensional convection in a Boussinesq fluid with infinite Prandtl number, 
confined between rigid horizontal boundaries and stress-free lateral boundaries, has 
been investigated in a series of numerical experiments. In a layer heated from below 
steady convection becomes unstable to oscillatory modes caused by the formation of 
hot or cold blobs in thermal boundary layers. Convection driven by internal heating 
shows a transition from steady motion through periodic oscillations to a chaotic 
regime, owing to the formation of cold blobs which plunge downwards and 
eventually split the roll. The interesting feature of this idealized problem is the 
interaction between constraints imposed by nonlinear dynamics and the obvious 
spatial structures associated with the sinking sheets and changes in the preferred cell 
size. These spatial structures modify the bifurcation patterns that are familiar from 
transitions to chaos in low-order systems. On the other hand, even large-amplitude 
disturbances are constrained to show periodic or quasi-periodic behaviour, and the. 
bifurcation sequences can be followed in considerable detail. There are examples of 
quasi-periodic behaviour followed by intermittency , of period-doubling cascades and 
of transitions from quasi-periodicity to chaos, associated with a preference for 
narrower rolls as the Rayleigh number is increased. 

1. Introduction 
Recent advances in the theory of dynamical systems have transformed our 

understanding of nonlinear dissipative processes. Although their bearing on 
turbulence has been much exaggerated, these results do have important fluid 
dynamical applications. In particular, they illuminate various aspects of nonlinear 
convection (Normande, Pomeau & Velarde 1977; Busse 1978, 1981 ; Berg&, Pomeau 
& Vidall984 ; Guckenheimer 1986). So far, most studies have focused on complicated 
temporal behaviour in systems with essentially simple spatial patterns (e.g. ArnBodo, 
Coullet & Spiegel 1985; Knobloch et al. 1986). In this paper we shall explore more 
complicated spatial structures and see how bifurcations and transitions to  chaos are 
related to changes in the pattern of cellular convection. 

In the nonlinear regime, bifurcations may lead to loss of symmetry or changes in 
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planform. These may be soft transitions (corresponding to supercritical bifurcations) 
as exemplified by symmetry breaking in two-dimensional magnetoconvection (Weiss 
1981) or three-dimensional Bdnard convection (T. B. Lennie, D. P. McKenzie, D. R. 
Moore & N. 0. Weiss, in preparation). Alternatively, there may be discontinuous 
changes of cell form in systems that are laterally constrained. Such transitions are 
associated with hysteresis and subcritical bifurcations. Two techniques are available 
for studying this behaviour in idealized configurations : the relevant partial 
differential equations can be integrated numerically, or the appropriate normal form 
equations can be derived and analysed (e.g. Knobloch & Guckenheimer 1983; Fauve 
1985). We shall investigate systems in which there is a transition from steady 
convection to complicated time-dependent behaviour, associated with changes in cell 
size, by means of numerical experiments. Although such computational studies are 
limited to idealized theoretical configurations which cannot be realized experi- 
mentally they do illuminate the interaction between spatial structure and the 
constraints imposed by nonlinear dynamics. 

Our aim is to isolate a particular effect and then to understand it. In  our models, 
time dependence is associated with the formation of hot or cold blobs in unstable 
thermal boundary layers. We seek to relate this obvious physical behaviour to 
mathematical results from dynamical systems theory. A similar instability arises for 
convection in a closed tube that is heated differentially (Keller 1966 ; Welander 
1967) ; indeed, motion in a circular tube is actually described by the Lorenz equations 
(Malkus 1972). Moreover, Krishnamurti (1970), Bergd & Dubois (1979) and Walden 
et al. (1984) have detected oscillations in laboratory experiments on convection 
which they ascribe to hot and cold blobs circulating round the cells. Similar 
oscillations have been found in numerical investigations of two-dimensional 
convection in a layer heated from below (Moore & Weiss 1973a; Curry et al. 1984). 
The Lorenz (1963) equations were originally derived from the lowest-order non- 
trivial approximation for this problem : after the initial bifurcation from a static 
solution to a branch of steadily convecting solutions, there is a subcritical oscillatory 
bifurcation, followed by chaos (Sparrow 1982). As more terms are included in the 
Galerkin approximation, generating higher-order systems of equations, solutions no 
longer display the rich time-dependent behaviour characteristic of the Lorenz system 
(Veronis 1966; Curry 1978; Maschke & Saramito 1982; Treve & Manley 1982; Curry 
et al. 1984). Accurate numerical solutions of the partial differential equations retain 
a supercritical oscillatory bifurcation, followed by periodic or doubly periodic motion 
but with no hint of chaos (Moore & Weiss 1973a; Curry et al. 1984). Reliable 
numerical studies of two-dimensional convection in a porous medium do, however, 
show periodic, quasi-periodic and chaotic oscillations (Kimura, Schubert & Straus 
1986). 

Chaotic behaviour also appears in numerical experiments on convection driven by 
internal heating (McKenzie, Roberts & Weiss 1974). We shall study two-dimensional 
Boussinesq convection in a layer confined by rigid horizontal surfaces and stress-free 
lateral boundaries, for a fluid with infinite Prandtl number (motivated by geophysical 
considerations). When the layer is heated from within, a thermal boundary layer 
forms a t  the top and motion is dominated by cold sinking plumes. As the rate of 
heating is increased there is first a stationary bifurcation (corresponding to the onset 
of steady cellular convection) and then an oscillatory bifurcation (when the 
boundary layer becomes unstable). Cold blobs form, producing oscillations as they 
circulate around t>he cell. These oscillations become aperiodic and grow more violent 
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until the cell eventually splits. The artificial restriction to two-dimensional flow 
allows us to follow the transition from periodicity to chaos, through quasi-periodic 
motion and cascades of period-doubling bifurcations, in considerable detail. At 
each stage the dynamics characteristic of low-order systems can be related to the 
physical behaviour of the temperature and velocity in a cell. Moreover, this simple 
problem has the property that the horizontal scale of motion diminishes as the rate 
of heating is increased, making it an interesting model for other, more complicated 
fluid systems. 

In  the next section we present the relevant equations and describe the techniques 
used to solve them. Then, in $3, we discuss convection in a layer heated from below 
and show how unstable thermal boundary layers lead to oscillations about a steadily 
convecting state. Thereafter, we concentrate on convection in a layer heated entirely 
from within, with a fixed temperature a t  the upper boundary. I n  $4 we treat 
convection in a roll with square cross-section, where there is a bifurcation from 
periodic to quasi-periodic behaviour, followed by a homoclinic bifurcation and an 
abrupt transition into chaos. This is the first time that such a transition (involving 
a strong resonance, period-doubling and intermittency) has been analysed in any 
detail. I n  $ 5  we study convection in a wider cell, where the ratio of roll width to layer 
depth h = 1.5; there chaos appears after a period-doubling cascade and periodic 
windows are related to resonances in the two-dimensional flow. In  $6 we investigate 
narrow cells, with h = 0.5, 0.75, and look at instabilities that appear in a layer 
containing several rolls. Finally, in 5 7, we summarize the mathematical and physical 
features of our results and comment on the behaviour that might be expected as 
more and more spatial scales are excited. 

2. Two-dimensional convection 
2.1, The model problem 

We consider two-dimensional convection in a Boussinesq fluid occupying the region 
(0 < x < Ad; 0 < z < d), referred to Cartesian coordinates with the z-axis pointing 
upwards. The velocity u is solenoidal and the vorticity, o = curl u = (0, w ,  0)  ; hence 
we introduce a stream function v+b such that 

Then conservation of energy requires that the temperature T satisfies the equation 

aT 
-+V-(Tu) = C + K V ~ T ,  
at 

where e is the thermometrical internal heating rate, while vorticity evolves according 
to the equation 

aw aT 
- + V . ( w u )  = -ga-++v2w.  
at ax (2.3) 

Here K ,  v are the thermal and viscous diffusivities, a is t,he coefficient of thermal 
expansion and g is the gravitational acceleration. When the Prandtl number, r = 
U / K ,  is very large (as in the Earth’s mantle) the inertial terms on the left-hand side of 
(2.3) can be ignored. Then, measuring distances and times in terms of the layer depth 



50 T .  B. Lennie, D .  P .  McKenzie, D .  R.  Moore and N .  0. Weiss 

d and the thermal diffusion time d 2 / K ,  respectively, we obtain the dimensionless 
equations 

where the Rayleigh number 

(2.6) 
gaATd3 R=-, 

KV 

and temperature is measured in terms of a characteristic temperature difference AT 
imposed across the layer, while the dimensionless internal heating rate 

Ed2 
Eo = - 

KAT * 

For infinite Prandtl number the only nonlinearity is produced by advection of 
temperature in (2.4), and the stream function satisfies the biharmonic equation 

from (2.1) and (2.5). We impose rigid, no-slip boundary conditions a t  the top and 
bottom of the layer, and assume that the lateral boundaries are free, so that 

1 @ = o  (x = 0 , n ;  z = O , l ) ,  

1 _ -  a2@ 
aZ ax2 
" - 0  (2 = 0 , l ) ;  -= 0 (x=O,h) .  

I n  what follows we assume that the upper boundary is maintained at  a fixed 
temperature (set arbitrarily to  zero) and fix either the temperature or the heat flux 
a t  the lower boundary. For a fixed temperature To a t  the lower boundary, AT = 
T0+ed2 /2~ .  For a fixed heat flux f across the lower boundary, AT = ( d / ~ )  ( f+ed).  In  
particular, for a layer heated entirely from below E,, = 0,  while for a layer heated 
entirely from within e0 = 1, from (2.7). The dimensionless temperature satisfies the 
boundary conditions 

- 0  (x = 0,h)  (2.10) 
aT 

T = O  ( ~ = l ) ,  -- ax 
and either (for fixed temperature) 

or (for fixed flux) 
U 1  

- = -(l-€o) ( x  = 0). aZ 

(2.11) 

(2.12) 

Thus we must solve the parabolic differential equation (2.4) together with the elliptic 
equation (2.8), subject to the boundary conditions (2.9), (2.10) and (2.11) or 

It is useful to introduce global measures of the vigour of nonlinear convection. One 
(2.12). 

such quantity is the mean kinetic energy 

E = (2h)-1 1: 1; dx dz = (2h)-l $W dxdz, (2.13) c s: 
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B.c. at  z = 0 €0 4 4 a, 
(a )  T = 1 0 1708 1.008 3.12 
( b )  aT/az= - 1  0 1296 1.23 2.55 
(c) T = f 1 3390 1.005 3.13 
( d )  m / a z  = o 1 2772 1.19 2.63 

TABLE 1. Critical Rayleigh numbers for marginal stability (fixed boundaries, T = 0 at z = 1 )  

which is zero in the absence of motion. Another is the Nusselt number N ,  which 
provides a dimensionless measure of the heat flux. Let 

To = A-* l T ( x ,  0) dx (2.14) 

be the mean temperature a t  the lower boundary. Then 

(2.15) 

is the ratio of the actual heat flux to that which would have been carried in the 
absence of convection, had the temperature gradient been uniform. For a layer 
heated entirely from below, ( N -  1) measures the convective flux. 

2.2. Linear stability 
Equations (2.4) and (2.8) possess a static, purely convecting solution with @ = w = 0. 
For a layer heated entirely from below this solution has a uniform temperature 
gradient so that T = 1-2.  If the layer is heated entirely from within then the 
temperature has a parabolic profile with 

T = ;(1-z2). (2.16) 

When this solution is perturbed we suppose that either the temperature or the 
vertical temperature gradient remains fixed at  the lower boundary. In each case the 
trivial, conducting solution undergoes a supercritical stationary bifurcation a t  some 
Rayleigh number R,(h). As h is varied, R, attains a minimum value for h = A, and 
R, = R,(h,). Table 1 shows the values of R,, A, and the horizontal wavenumber 
a, = n/h,, for the four cases that we shall consider (Chandrasekhar 1961 ; Sparrow, 
Goldstein & Jonsson 1964; Roberts 1967; McKenzie et al. 1974). 

2.3. Numerical techniques 
In  the nonlinear regime solutions have to be obtained numerically. The program used 
was originally constructed in order to test components of a code developed for three- 
dimensional computations (T. B. Lennie et al., in preparation) and has been designed 
to take particular advantage of vector computers like the Gray-1. The equations are 
solved by finite-difference methods, with second-order accuracy, on a grid with equal 
intervals in the x- and z-directions. The temperature is advanced on four interlocking 
meshes, using an explicit method that combines a leapfrog scheme for the nonlinear 
term with a Dufort-Frankel scheme for the diffusive term (McKenzie et al. 1974; 
Moore, Peckover & Weiss 1974). This ‘four-colour ’ method generates values of T on 
two separate meshes a t  each time-step, and the stream function 1c. is obtained by 
expanding both sides of (2.8) as finite Fourier sine series and using a combination of 
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fast-Fourier-transform algorithms and tridiagonal inversion techniques (Moore 
1988a; Moore & Wallcraft 1988). The boundary conditions (2.9) are satisfied by use 
of a capacitance matrix (Hockney 1970). This essentially involves solving first the 
homogeneous Dirichlet problem corresponding to (2.8) with $ = w = 0 on all the 
boundaries and then adding a linear combination of solutions, each of which has 
w = 0 a t  all interior points and a t  all but one of the points on the upper and lower 
boundaries. This combination is chosen so that the resulting stream function satisfies 
the boundary condition a$./az = 0 a t  z = 0 , i .  Full details of this method are given 
by D. R. Moore (in preparation). 

The number of mesh intervals in the vertical direction N, is of the form N ,  = p x 29, 
so as to facilitate the use of FFT techniques. For the runs described here N, was 
varied between 8 and 160 in order to obtain adequate resolution. The number of 
mesh points is therefore given by AN: and the time-step At was kept small enough 
to ensure accuracy and stability. For sufficiently large Rayleigh numbers, At ci Nil 
so that the total computing time varies as AN:. We find that, in order to obtain an 
error of less than 1 YO in the Nusselt number N for steady convection a t  high R in a 
layer heated from below, the mesh must have N, 2 12N. This corresponds to having 
a t  least 6 mesh intervals across a thermal boundary layer. Note that the boundary- 
layer structure is more complicated for rigid than for free boundaries and that twice 
as many mesh intervals are needed to ensure an accurate solution (cf. Schneck & 
Veronis 1967; Moore et al. 1974). 

3. Unstable thermal boundary layers 
In this section we describe the onset of time-dependent behaviour in a layer heated 

uniformly from below, so that e, = 0 and T ( z ,  0) = 1 (case (a )  of table 1).  Convection 
first sets in for rolls that  are almost square in cross-section and nonlinear solutions 
have been obtained for finite (Schneck & Veronis 1967; Plows 1968; Clever & Busse 
1974) and infinite (Busse 1967) values of cr. We studied this problem in order to 
check our code and calibrate its accuracy, and we have computed solutions for 
1800 Q R < lo6 with h = 1 .  Our results are in close agreement with linear theory 
for R close to R, and with steady solutions obtained by Busse (1967) for 

At R = R, two solution branches, corresponding to steady clockwise or 
anticlockwise motion, bifurcate from the static solution. We have obtained stable 
steady solutions for R < 5 x lo5; the corresponding values of N are listed in table 2 
and plotted against R in figure 1 (a) .  For R 2 lo4 these results are consistent with 
Busse’s (1967) relation 

R < 3 x 104. 

R 
-(N-1) = 1.275 
Rc 

but for R 2 2 x lo4 a marginally better fit is given by the simple power law 

0.22 

N = 1.812($) , 

which is very close to the asymptotic power law of Roberts (1979). 
When eo = 0 the system (2.4), (2.8)-(2.11) is invariant under the transformation 
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Steady solutions 

R Nz N R 

2.5 x 103 64 1.481 5.5 x 105 
104  64 2.611 6.5 x 105 

105 64 4.45 7.8 x 105 
2 x 105 64 5.18 8.1 x 105 
4 x  lo5 80 6.02 8.5 x 105 
5 x  lo5 96 6.30 9.5 x 1 0 5  
6 x  lo5 96 6.55 lo6 

3~ 1 0 4  64 3.38 ‘ 7 . 6 ~  lo5 

(unstable) 

Oscillatory solutions 

N z  N m i n  

96 6.31 
96 6.65 

128 6.93 
160 6.96 
160 7.03 
160 7.13 
160 7.36 
160 7.40 

TABLE 2 .  Convection in a layer heated uniformly from below 

N m a x  

6.94 
7.47 
7.81 
7.84 
7.92 
8.04 
8.29 
8.47 

The steady solutions on branches that bifurcate from the static solution all possess 
the strong Boussinesq symmetry (3.3), corresponding to point symmetry about the 
centre of the roll. Note that the boundary conditions a t  x = 0,h  imply that the 
solution can be extended by assuming that i t  is periodic in x,  with period 2h, and 
imposing reflection symmetry about x = 0, so that $( -x,  z )  = - $(x, z )  and T (  -x,  
z )  = T(x, z).  Then the two solution branches bifurcating from R = R, are related by 
a translation h in the x-direction. 

In  addition to the fundamental mode with a single roll there are higher modes with 
more than one roll in the box. The mode with an eigenfunction $ cc sin (mnxlh), 
corresponding to m rolls, bifurcates from the trivial solution a t  Rim) = R,(h/m) and 
we shall only consider aspect ratios such that Rim) < Rim+1), m = 1 , 2 , 3 , .  . . . For each 
value of m there is a pair of solution branches with opposite senses of motion which 
remains distinct from pairs with different values of m. We assume that the static 
solution is globally stable for R < Rhl), that equilibrium solutions are bounded for all 
finite values of R and that each pair of solution branches persists for all R > Rim). 
The corresponding solutions may gain or lose stability a t  secondary bifurcations and 
any two pairs of solution branches may be linked by branches of mixed solutions 
emerging from these bifurcations. 

We have looked for secondary bifurcations from the pair of solution branches with 
m = 1. The simplest bifurcation of codimension one is a saddle-node but since 
we found no evidence of saddle-node bifurcations or associated hysteresis we shall 
ignore this possibility. The remaining generic bifurcations of codimension one 
are an oscillatory (Hopf) bifurcation and a transcritical stationary bifurcation 
(Guckenheimer & Holmes 1983) ; the latter may be forced by symmetries to become a 
pitchfork. (In simple systems like the Lorenz (1963) equations the only possibility is 
a Hopf bifurcation (Sparrow 1982).) What happens depends on whether the 
symmetry (3.3) is broken or not. If the symmetry is maintained there may be a Hopf 
bifurcation leading to oscillations about a steady solution with m = 1 or a stationary 
bifurcation leading to two branches of mixed solutions that are not mapped into each 
other when the sense of the perturbation is reversed. It does not, however, follow 
that the bifurcation itself must be transcritical. When the branch of mixed solutions 
involves perturbations of order e corresponding to rolls with odd m there is a 
pitchfork bifurcation and any symmetry enters only at O(e3). If the symmetry (3.3) 
alone is broken at the bifurcation then the generic possibilities are a Hopf bifurcation 
or a pitchfork bifurcation leading to two steady solution branches related by the 
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R 
1 0 4  1 0s 106 

I 1 I 

R x 10-5 

(b) 

4 '  I I 
200 400 600 

RIR, 

FIGURE 1. Variation of Nusselt number with Rayleigh number for convection in a layer heated 
from below ( A  = 1). (a) Steady solutions : filled circles denote our results, open circles those of Busse 
(1967). ( b )  Branches of steady and oscillatory solutions : vertical lines indicate amplitudes of 
oscillations. Broken lines indicate the unstable continuation of the steady branch. 

symmetry (cf. T. 8. Lennie et al., in preparation). Curry et al. (1984) located both 
types of Hopf bifurcation for two-dimensional convection with free boundaries and 
a finite Prandtl number. In this problem, however, the symmetry (3.3) is always 
preserved and there is only an oscillatory bifurcation. 

The run with R = 5 x lo5 shows oscillations that gradually decay but at R = 
6 x lo5 there are slowly growing oscillations about the steady state. Apparently there 
is an oscillatory (Hopf) bifurcation at  R x 5.5 x lo5. For this value of R there are 
already stable finite-amplitude oscillations about the steady solution ; indeed the 
solution for R = 5 x lo5 behaved as though the trajectory was lingering near the 
ghost of a large-amplitude limit cycle. It seems, therefore, that the bifurcation is 
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subcritical and that stable oscillations first appear a t  R x 5.2 x lo5. We find that 
periodic oscillations persist a t  least up to R = lo6. The maximum and minimum 
values of N are listed in table 2 and the bifurcation diagram is shown in figure 

It is, of course, well known that inadequate resolution may lead to spurious 
oscillations (Schneck & Veronis 1967) but we are confident that the oscillations we 
have found are genuine. We have computed solutions for N ,  = 80, 96, 128 and 160 
and the same pattern of behaviour persists as the number of mesh intervals is 
doubled. Moreover, the typical thickness 6 of a thermal boundary layer is about one- 
tenth of the layer depth a t  R = 5 x lo5 and for N ,  = 96 there are 9 intervals across 
it. This resolution is sufficiently accurate for steady solutions but as the oscillations 
grow more violent it becomes difficult to resolve fine structure within the boundary 
layers. Hence we have not sought solutions for R > lo6. 

Furthermore, we expect that the thermal boundary layers will become unstable for 
sufficiently large values of R (Howard 1966; Busse 1967; Spiegel 1971). The 
boundary-layer thickness S x (2N1-l and the local value of the Rayleigh number for 
the boundary layer itself, 

increases with increasing R, from (3.2). When 8 exceeds some critical value 8, the 
boundary layer should become unstable to modes with wavelengths of order 6. To 
estimate h, we note that for a layer with one fixed and one free boundary 8, x 1100 
and that R, is further reduced for penetrative convection (cf. Moore & Weiss 1973 b)  ; 
from our results we find that 8, x 250. It must be emphasized that this thermal 
instability differs from the mechanism that produces oscillations a t  finite u for 
convection between free boundaries. There 8 remains subcritical and advection of 
vorticity becomes important; here only the temperature is advected by the flow. 

Inspection of the solutions shows that the symmetry (3.3) is maintained in the 
oscillatory regime. It follows that there must be an odd number of pairs of hot and 
cold blobs. In  our experiments three pairs circulate around the cell, giving rise to 
strictly periodic oscillations (once transients have died away). As fluid moves along 
the lower (upper) boundary a hot (cold) blob develops, with a width of order 6, and 
eventually breaks away from the boundary as a rising (sinking) thermal, only to be 
swept into the rising (sinking) plume a t  the edge of the cell. The blob decays as it is 
carried round until it returns to the boundary where it was formed, when the cycle 
is repeated. Meanwhile, however, two other blobs have experienced a similar 
development. Clearly, this process depends on the ratio of the growth time in the 
boundary layer to the turnover time in the cell. If this ratio is sufficiently small, blobs 
may break away and totally disrupt the cell. It is possible that such behaviour, 
preceded by further bifurcations, occurs for higher values of R in this problem. As 
thermals form, however, the horizontal temperature gradient is reversed and 
vorticity changes sign within the boundary layer. To follow such structures in detail 
requires a further refinement of the mesh and we have therefore concentrated on the 
more interesting problem of a layer heated from within, where the same mechanism 
leads to chaotic oscillations. In addition, we have looked a t  convection driven by a 
fixed heat flux from below (case (b)  of table l ) ,  where steady solutions persist a t  least 
up to R = 3.6 x lo6, Since this only corresponds to R w 6 x los for case (a), the result 
is not surprising. 

Once three-dimensional disturbances are admitted, instabilities set in a t  a lower 
Rayleigh number and rolls are only stable for R < 22600 (Busse 1967). Although 
cross-rolls are the most effective instability it is still possible to locate oscillatory 

1 (b ) .  

8 = @3R, w Ro.38, (3.4) 
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instabilities with sinusoidal variation in the y-direction (corresponding to travelling 
or standing waves). For finite u this behaviour can occur with a single symmetrical 
pair of blobs, satisfying (3.3), or with two pairs that break the symmetry (Bolton, 
Busse & Clever 1986) but the case with infinite Prandtl number has not yet been 
investigated. In an experimental study of convection in silicone oil with u = 130, 
Berg6 & Dubois (1979) observed oscillatory behaviour. The box contained a single 
square cell, with a hot plume rising a t  the centre, and they showed that periodic 
oscillations in UI were associated with the formation of a hot blob in the lower 
boundary layer. In a system whose planform deviated slightly from the symmetry of 
a square they found that oscillations appeared when R x 280R, but with a 
symmetrical cell the oscillatory bifurcation was postponed to R x 420R, ; these 
values agree well with our results. Moreover, as R was increased they detected period 
doubling followed by a transition to aperiodic (or chaotic) oscillations. 

4. Quasi-periodicity and chaos 
The remainder of this paper is concerned with convection in a layer heated from 

within. The static conducting solution given by (2.16) has a temperature To = a t  the 
lower boundary so that, from (2.15), the Nusselt number N = 2 in the absence of 
convection. Similarly, the Rayleigh number as defined by (2.6) is based on a 
(dimensional) temperature difference AT that  is twice the actual temperature 
difference across the layer. Hence it is convenient to define modified Nusselt and 
Rayleigh numbers 

in order to facilitate comparison with other problems (cf. Roberts 1967 ; McKenzie 
et al. 1974). 

M = I f l ,  R,=- :R (4.1) 

4.1. Fixed temperature at lower boundary 
In an experimental realization of this problem it would be possible either to keep the 
lower boundary a t  a fixed temperature To or to have an insulating boundary so that 
there is no heat flux into the layer from below. I n  the former case both To and R must 
be prescribed ; if we wish to vary a single parameter we must therefore impose some 
arbitrary relationship between them. The natural choice, corresponding to case (c) of 
table 1,  is to set T, equal to the value it would have for a static layer with the same 
(dimensioned) heating rate and no heat flux from below. This implies that en = 1, 
T, = $AT in both the conducting and the convecting regime. It follows that once 
convection has set in some fraction of the total heat flux is supplied from below and 
this fraction increases with increasing R, as convection becomes more efficient. 

For sufficiently large R we therefore expect to find behaviour like that described 
in $3  with thermal boundary layers a t  the upper and lower boundaries, though the 
symmetry (3.3) no longer holds. By analogy with those results oscillations should 
appear when N x 6. For R = 4 x lo5 and h = 1 we obtain a steady solution with 
N = 6.09 but by R = 4.4 x lo5 an oscillatory bifurcation has occurred and when 
R = 6 x lo5 solutions seem to be aperiodic. These results suggest that internal heating 
promotes chaotic behaviour. It is, however, more instructive to isolate the effects of 
internal heating from those of heating from below by considering the configuration 
with an insulating lower boundary. 
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n . . .  0.25 0.5 0.75 1 .o 1.5 2.0 

55 027 7 236 3573 2 868 2912 3 504 
1752 

RO 
4 0  27513 3618 1787 1434 1456 

TABLE 3. Onset of convection in a layer heated entirely from within (aT/az = 0 at z = 0) 

Steady solutions Oscillatory solutions 

4 Nz M 4 Nz M m , n  M m ,  
3 x  lo3 32 1.47 2.3 x 105 32 3.80 4.02 

104 32 2.22 3 x 105 128 3.98 4.86 
3 x 104 32 2.82 

105 32 3.42 3.1 x 105 128 3.8 5.0 
2 x 105 32 3.82 (intermittent) 

TABLE 4. Convection in a layer heated from within ( A  = 1) 

4.2. Heating entirely from within 

We have studied the transition to chaos in some detail for the more interesting case 
(d ) ,  with an insulating lower boundary. Table 3 shows the Rayleigh number R,, = 
$R, at which the pitchfork bifurcation occurs, as a function of the cell width h (cf. 
Roberts 1967). Nonlinear behaviour was first investigated by Roberts (1967), using 
the mean-field approximation. He found that rolls were dominated by a single 
thermal boundary layer a t  z = 1,  whose thickness 6 - (Ra2 In Ra2)-i as R + CO, while 
the Nusselt number M x (Ra2 In Ra2)%, where a = n/h. As R was increased the 
preferred roll width decreased but for R sufficiently large, hexagons with downward 
plumes at  their centres were preferred to rolls. Thirlby (1970) carried out two- and 
three-dimensional numerical experiments with a finite Prandtl number CT = 6.8. 
When R, = 5000 the preferred roll width had decreased by 20% and downward 
hexagons were preferred for R, 2 lo4. Further computations on two-dimensional 
convection, with CT infinite but between free boundaries, were done by McKenzie 
et al. (1974) who found a transition from steady motion to chaotic behaviour, followed 
by splitting into several cells, for R, M 7 x lo5. 

In  this section we describe results obtained for rolls with square cross-section 
( A  = 1) .  Steady solutions are listed in table 4 and the modified Nusselt number M is 
plotted against the Rayleigh number in figure 2(a). Figure 3 shows isotherms, 
vorticity profiles and streamlines for steady convection a t  R, = 2 x lo5. The 
symmetry (3.3) no longer applies and there is a single prominent boundary layer a t  
the top of the cell, with a cold plume descending a t  one side. The fluid heats up as 
it moves, so the hottest region lies immediately below the boundary layer and all the 
fluid has to approach the cool region in order to  lose heat. Vorticity is generated a t  
the edge of the sinking sheet, where laT/axl is greatest, and a t  the fixed boundaries, 
while the maximum velocity is in the sinking slab. Since there is only one thermal 
boundary layer, its thickness 6 x N-' = (2M)-I for large R. From figure 2(a) we find 
that 

(4.2) 
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R ,  

3.04 3.06 3.08 3.10 
R ,  x 10-5 

FIQURE 2. (a) Variation of modified Nusselt number with Rayleigh number for convection in a layer 
heated from within ( A  = l ) ,  showing transition from steady to oscillatory behaviour. ( b )  Quasi- 
periodic solutions : variation of the period of modulation P, with Rayleigh number. 

approximately, over the range 2 x lo4 < R,  < 2 x lo5. Thus 6 K R;O.lS, as with free 
boundaries (McKenzie et al. 1974), which is consistent with Roberts’ (1967) result. 
Moreover, the local Rayleigh number 

(of. (3.4)), so we again expect that the boundary layer will become unstable as R is 
increased. For R, = 2 x lo5 we find that 6 x 0.2 and A x 450: so instability seems 
imminent. Note that, because there is only one prominent thermal boundary layer, 
with M z 4, adequate resolution can be obtained on a mesh with N ,  x 30. Hence this 
problem is amenable to numerical investigation. 

Around R, = 2.2 x lo5 there is an oscillatory (Hopf) bifurcation. The instability 
mechanism is the same as that discussed in $3, except that there are only cold blobs, 
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\ I 

I I 

FIGURE 3. Steady convection driven by internal heating (3, = 2 x lo5, A = 1). ( a )  Isotherms, ( b )  
vorticity profiles and ( c )  streamlines. Motion is dominated by the sinking sheet at the right-hand 
boundary. 
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FIGURE 4 ( a ,  6) .  For caption see facing page. 

t 

which form in the upper boundary layer and are separated by regions that are 
relatively warm. For R, = 2.3 x lo5 the Nusselt number oscillates about the value for 
steady convection and by R, = 3 x lo5 the value of N varies by 20 % during an 
oscillation. These periodic oscillations persist as N ,  is increased from 32 to 128. In  
figure 4 we show N and the kinetic energy E as functions of time, together with 
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FIGURE 4. Periodic oscillations about an unstable steady solution (R ,  = 3 x lo5, h = 1). (a )  
Variation of Nusselt number N with time; ( b )  variation of kinetic energy E with time; ( c )  
projection of limit cycle onto (E,N)-phase plane; (d )  projection of limit cycle onto the [u(i,+, t)- 
w($, +, t)]-phase plane. 
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projections of the limit cycle onto the (E ,  N)-phase plane and onto the plane with 
coordinates given by the velocity components u and w a t  the midpoint of the cell. 
The kinetic energy has sharp maxima and flat minima, where E drops to 12 % of its 
peak value, so the mean speed varies by a factor of three. The velocity responds 
instantaneously to changes in the temperature field, which are illustrated in figure 5. 
The first two sets of isotherms show an instability developing into a cold blob half- 
way across the cell ; in figure 5 ( c )  the blob has moved towards the sinking plume, the 
thermal boundary layer is distended and N (measured at  the top of the cell) has 
reached a minimum. In figure 5 ( d )  the blob is plummeting downwards, producing 
strong horizontal temperature gradients which generate vorticity, so that E rises to 
a maximum. In figure 5 ( e ) ,  the blob has reached the bottom of the cell and E has 
declined. Meanwhile the thermal boundary layer has contracted, so that  N attains a 
maximum. Then, in figure 5(f) ,  the next blob begins to develop and the cycle repeats 
again. Note that the eye of the eddy migrates upwards as the blob enters the sinking 
plume and then follows the blob downwards, so that the horizontal velocity u 
reverses a t  the centre of the cell. 

At the end of the cycle the first cold blob has only travelled half-way round the cell 
and is spatially distinct from the second blob developing in the upper boundary 
layer. In  order to  understand the relationship between this spatial structure and the 
time-dependent motion we must bear in mind both the physics contained in the heat 
equation (2.4) and the nature of the oscillatory bifurcation. At the bifurcation the 
temperature varies harmonically with period P about its mean value a t  each point 
in an Eulerian reference frame, and the spatial structure of the oscillations is 
described by an appropriate complex eigenfunction. Physically, (2.4) states that  
temperature fluctuations are advected with the fluid subject to the effects of 
diffusion. The instability develops in the boundary layer and is carried into the 
sinking plume. As the cold blob moves across the lower part of the cell its anomalous 
temperature diffuses away but some remnant survives to re-enter the upper 
boundary layer. At the bifurcation this remnant must trigger a new instability (since 
the temperature fluctuation varies as exp (2lritlP)) which develops sufficiently 
rapidly during its transit across the top of the cell to survive the precipitate descent 
and subsequent diffusion. Thus the transition from stability to instability and the 
amplitude of nonlinear oscillations depend on the rate a t  which a blob grows in the 
thermal boundary layer but the period of the oscillations is determined by the time 
taken for a modulated thermal wave (cf. Rand 1982) to circulate around the cell, 
which is related to the turnover time for a typical fluid element. 

As R is increased the oscillations grow in amplitude but remain strictly periodic. 
The cold blob that is a t  the base of the cell in figure 5 ( e )  is smoothed out by diffusion 
but it can still be followed round until it re-enters the boundary layer. Close 
inspection of the figure shows that the circulation time for the thermal wave is twice 
the period of the oscillation. At any instant of time there are two cold blobs 
circulating round the cell; at any position in space the passage of one blob is 
reproduced identically as the second blob passes by after one period of the oscillation 
has elapsed. Since the period varies continuously the complex eigenfunction a t  the 
bifurcation must have the same structure (cf. Bolton et al. 1986). By analogy with 
studies ofa  ninth-order extension of the Lorenz system (M. Nagata, M. R. E .  Proctor 
& N. 0. Weiss, in preparation) we expect that the Hopf bifurcation is associated with 
branches of mixed solutions linking the pairs of branches with m = 1 and m = 2. 
Moreover, the nature of this bifiircation imposes a constraint such that the two cold 
blobs behave identically as they pass any position in the cell. This constraint can 
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I \  \ I 

FIGURE 5.  As for figure 4 but showing isotherms at equally spaced intervals during an oscillation. 
Note the development of a cold blob in the boundary layer which takes two periods of the 
oscillation to travel round the cell. 
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only be broken a t  a bifurcation. After the initial Hopf bifurcation the frequency of 
blob formation in the boundary layer is locked a t  twice the turnover frequency in the 
roll. As R, is increased these two frequencies develop differently until the nonlinear 
resonance can no longer be sustained. After the next bifurcation we would expect to 
find either period-doubling (so that each blob repeats exactly but the two are no 
longer identical) or quasi-periodic behaviour (with periodic modulation of the 
amplitude). When h = 1 the symmetry constraint is broken by a second Hopf 
bifurcation but period-doubling occurs when h = 1.5. Further bifurcations lead to 
complicated time-dependent behaviour ; this transition is easier to follow for the case 
with h = 1.5, which will be discussed in $5. 

Results for h = 1 and R, = 3.1 x lo5 show that one blob is more prominent than 
the other, so that successive peaks in N differ by about 6%. This solution is not 
periodic and eventually gives way to chaos. Runs a t  higher values of R, appear 
chaotic. In order to identify the route to chaos we have studied behaviour for 
3 x lo5 < R < 3.1 x lo5 in some detail, using a mesh with N ,  = 64. Experience 
with other problems suggests that refinements of accuracy will shift bifurcations 
slightly without affecting their overall pattern (Knobloch et al. 1986). We find that 
there is a second Hopf bifurcation a t  R, x 3.03 x lo5, followed by quasi-periodic 
behaviour. Figure 6 shows the time sequences of N for R, = 3.04 x lo5, 3.08 x lo5 and 
3.093 x lo5. Note the differences between alternate maxima or minima and the 
increasing period P, of the modulation. In  figure 2(6) this modulation period is 
plotted against R, ; apparently P, + 00 as R, + Rib) x 3.0935 x lo5. At Rib) there is a 
homoclinic bifurcation and for 3.094 x lo5 < R, < 3.1 x lo5 we find intermittent 
behaviour : episodes where the trajectory approaches a doubly periodic (P2) orbit 
with twice the period of the basic cycle are followed by episodes of chaos. We have 
not sought solutions beyond R, = 3.2 x lo5, where the trajectory is still chaotic. 

As R, is decreased below RIh), the chaotic attractor persists until R, = RP’ x 
3.071 x lo5. Figure 6(d) shows a typical time series in the range RF) < R, < 3.1 x lo5, 
in which apparent order eventually gives way to chaos. As R, approaches RP) from 
below we find that the noisy P2 behaviour is transient and solutions eventually 
become quasi-periodic. This behaviour can be interpreted as follows. For 2.2 x lo5 < 
R, < 3.03 x lo5 there is a stable periodic orbit and all trajectories are attracted to 
a limit cycle in phase space. To investigate its stability we consider the eigenvalues 
p of the return map. At R, = Rf“ x 3.03 x lo5, a pair of complex-conjugate 
eigenvalues cross the unit circle in the complex p-plane, as sketched in figure 7 ( a ) ,  
near p = - 1 (which would correspond to period-doubling). For R, > Rf“ these 
eigenvalues approach the negative real axis where they eventually merge ; thereafter, 
one real eigenvalue moves outwards while the other decreases and eventually crosses 
into the unit circle a t  R, = Rf’ (say). Such behaviour arises from unfolding the 
bifurcation of codimension 2 associated with the strong resonance a t  p = - 1, 
described by Arnol’d, Takens and Bogdanov (Arnol’d 1983 ; Guckenheimer & 
Holmes 1983) which is also related to the onset of overstability in double-diffusive 
convection (cf. Knobloch et al. 1986). The corresponding bifurcation diagram is 
sketched in figure 7 ( b )  : the branch of periodic solutions undergoes an oscillatory 
bifurcation a t  Rr’ and a pitchfork bifurcation a t  Rf’ > RY). The latter bifurcation 
gives rise to a branch of unstable period-doubled (P2) solutions which could turn 
round a t  RP) and regain stability. The branch of quasi-periodic solutions emerges at 
Rf“ and ends on the (unstable) P2 branch at Rib), with a homoclinic bifurcation. (In 
general there will be horseshoes in the return map near such a homoclinic orbit.) For 
R, > Rib) we might expect to find trajectories attracted to the upper (stable) portion 
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of the P2 branch. In fact they snap through into chaos and inspection of figure 6 ( d )  
suggests that  further period-doublings occur in the process. For t < 1.2 there is an 
approximate P2 solution, which develops into P4, etc. as time increases. Apparently 
the P2 branch has gone through a cascade of period-doubling bifurcations before 
gaining stability, and a chaotic attractor appears a t  RP'. For By' < R, < RY), 
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FIGURE 6. Quasi-periodicity and chaos ( A  = 1). N ( t )  for quasi-periodic (doubly periodic) solutions 
with (a)  R, = 3.04 x lo5, ( b )  R, = 3.08 x lo5, ( c )  R, = 3.093 x lo5. ( d )  Intermittent chaos for R, = 
3.093 x lo5. In  (a )  and ( b )  the quasi-periodic pattern, which corresponds to displacements lying on 
a closed curve about the unstable fixed point in the return map, is clearer at the bottom than the 
top of the figures. 

1 



Breakdown of steady convection 67 

- R e t  Rp’ 

1 
PI 
/ 

,/--- 

R,  b 

R, 

(4 (4 
FIUURE 7 .  Bifurcations and transitions to chaos. (a)  Eigenvalues crossing the unit circle in the 
complex p-plane and ( b )  schematic bifurcation pattern for runs with h = 1, showing quasi- 
periodicity and an abrupt transition to chaos after a homoclinic bifurcation ; (c) and (d ) eigenvalues 
and bifurcation pattern for runs with h = 1.5, showing a period-doubling cascade leading into 
chaos. In  the bifurcation diagrams the amplitude of the displacement in the return map is plotted 
against the parameter R,. 

therefore, all trajectories are attracted to a torus: for RP) < R, < Rib), either 
trajectories are attracted to the torus or they become chaotic. For R, > Ri”) the only 
attractor is chaotic. For R, near to RY), however, trajectories may approach the 
stable manifold of the P2 branch, so that they appear to be periodic for a finite time 
and then escape to undergo a burst of chaos before being reinjected into the 
neighbourhood of the P2 orbit. This form of intermittency differs in detail from those 
described by Pomeau & Manneville (1980). 

We have described here a general process that leads from a steady state to chaos 
after two Hopf bifurcations and a homoclinic bifurcation. Such transitions have been 
observed in experiments (cf. figure 12 of Libchaber, Fauve & Laroche 1983). We 
must emphasize, however, that the underlying route to chaos is through a cascade 
of (unobservable) period-doubling bifurcations. In other systems we may expect to 
find what has eluded us here, namely a sequence of solutions with period 2,4,. . . on 
the stable portion of the P2 branch. Moreover, diligent search should reveal intervals 
in R, where periodic solutions interrupt the chaos, as we shall see in the next 
section. 

I 
____) 
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R, 
2~ 104 

s x  104 

9.5 x 104 
9.7 x 104 
9.8 x 1 0 4  

105 
1.06 x 105 

4 x  lo4 
6 x  lo4 

9 x lo4 

Solution R, 
S 1.08 x 1 0 5  
S 1.085 x 105 
S 1.09 x 105 
P1 1.1 x 1 0 5  
P1 1.2 x 105 
P1 1.3 x 105 
P1 1.4 x 105 
P2 1.6 x 1 0 5  
P2 2~ 105 
P2 3 x 105 

Solution 

P4 
P4 
P8 
C 
C 
SP8 
C 
P4 
Pi 
QP 

R, 
4~ 1 0 5  

5 x 105 

7 x 105 

9 x 105 

6 x  lo5 

8 x lo5 

lo6 
1.2 x lo6 
1.4 x lo6 

Solution 

Pi  
P1 
P i  
P2 
P2 
P2 
QP 
C 
C 

( 2  cells) 

TABLE 5 .  Convection in a layer heated from within ( A  = 1.5, N ,  = 64) 

5. Bifurcations and changing spatial structures 
Convection driven by internal heating results in the formation of a cold boundary 

layer. We have seen that, in rolls with square cross-section, cold blobs may form and 
detach themselves from this layer when the Rayleigh number is sufficiently large. 
This instability is associated with a preference for narrower convection cells and we 
expect it to develop a t  lower values of R, if h > 1 : the wider the box, the thicker the 
boundary layer is when it breaks up, so that adequate resolution can be obtained 
with a relatively coarse mesh. The consequent reduction in computing time (which 
varies as AN:) makes it feasible to investigate this process systematically. In this 
section we shall explore nonlinear time-dependent behaviour in rolls with h = 1.5, 
keeping N ,  = 64. 

Table 5 lists the types of solution we have found. For 6 x lo4 2 R, 2 R,, we obtain 
steady solutions (denoted by S in the table). As expected, convection is less efficient 
than i t  is with square rolls: a t  R, = 6 x lo4, the modified Nusselt number M x 3.02, 
about 5 %  less than the value derived from figure 2(a ) .  There is an oscillatory 
bifurcation a t  R, z 7 x i04 (about one-third of the corresponding value for h = 1) 
when 6 x 0.25 and, from (4.3), a x 360. I n  a wider cell, a disturbance in the thermal 
boundary layer has more time to develop before it is swept into a sinking sheet, and 
so the instability sets in a t  a lower value of R,. Since a new blob can develop as soon 
as the thermal boundary layer has recovered from its predecessor, there are likely to 
be several cold blobs circulating round the cell. In our numerical experiments there 
are always two. To describe what happens we must distinguish between three time 
intervals: the cycle period 7, is the mean interval between identical phases in the 
formation of successive blobs ; the turnover time is the time taken for a typical fluid 
element to circulate around the cell; and P is the period of a periodic solution. If 
P = n7,, so that every nth blob behaves identically, the solution is said to be of type 
Pn (or, loosely, of period n). Now there is only one bifurcation of codimension one 
that leads to oscillations about a steady state, and that is a Hopf bifurcation. Near 
the bifurcation point disturbances must vary sinusoidally, although the eigen- 
functions represent two spatially separated blobs. Hence the solutions are of type 
Pi and their period is half the turnover time. Blobs that are physically distinct are 
constrained to behave identically and this symmetry can only be broken by a further 
bifurcation. 

The solutions of type Pi are similar to those for h = 1 (cf. figures 4 and 5 ) .  At 
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R, = 9.5 x lo4 we find that 3.25 < M < 3.60, a variation of 10%. Cold blobs begin to 
detach themselves from the boundary layer before they reach the sinking plume and 
the peaks in kinetic energy are less sharp than for h = 1 (the fraction of the period 
for which E is greater than half its maximum value has increased from 13 % to 33 %). 
At R, x 9.8 x lo4 there is a supercritical pitchfork bifurcation which breaks the 
symmetry between the spatially separated blobs. The period doubles and becomes 
equal to the turnover time. At the bifurcation point a single real eigenvalue of the 
return map crosses the unit circle a t  ,u = - 1, as sketched in figure 7 ( c )  ; apparently 
the conjugate eigenvalues merge inside rather than outside the circle I,u[ = 1. The 
corresponding bifurcation diagram is sketched in figure 7 ( d ) .  Evidently there is 
a bifurcation of codimension two with a double eigenvalue a t  ,u = - 1 for some A,, 
1 < A, < 1.5 (Arnol’d 1983; Guckenheimer & Holmes 1983). Note, however, that the 
P2 branch bifurcates to the left in figure 7 ( a )  and to the right in figure 7 ( d )  so that 
increasing h from 1 to  1.5 apparently also allows a transition from a P2 branch with 
a turning point, to  one that is monotonic (cf. figure 2 of Knobloch, Weiss & Da Costa 
1981). By varying the lower boundary condition as well as h i t  might be possible to 
locate a bifurcation of codimension three. 

What happens physically a t  the period-doubling bifurcation is quite clear. One of 
the two blobs becomes more prominent ; as it sinks the cold plume swells and kinetic 
energy increases. The other blob is swept more rapidly across the top and so has less 
time to develop. Thus the first blob maintains its advantage. It is less obvious why 
the transition from solutions of type P1 to type P2 should proceed via quasi- 
periodicity for h = 1 and by period-doubling for h = 1.5. The patterns in figure 7 ( a  
and c )  are equally plausible and we conjecture that the transition from one to the 
other is caused by changes in the effect of diffusion as the aspect ratio is 
increased. 

For 9.8 x lo4 < R, < 1.06 x lo5 we find stable oscillations of type P2. Figure 8 ( a )  
shows the Nusselt number N as a function of time for R, = 1.06 x lo5 and it  is 
apparent that the period P = 27,. The corresponding trajectory in phase space is a 
closed curve and figure 8 ( b )  shows this limit cycle projected onto the ( E ,  N)-plane. 
Note the distinction between alternative cycles, with a sharper rise for the more 
prominent cycles. At R, x 1.07 x lo5 there is a period-doubling bifurcation of the 
type familiar from studies of low-order systems. In  figure 8 ( c  and d )  N and E are 
plotted against time for the P4 solution a t  R, = 1.08 x lo5 and the corresponding 
limit cycle is illustrated in figure 8 ( e ) .  The two lobes of the P2 solution have split in 
such a way that three maxima in N lie close together. Figure 9 shows the variation 
of the temperature field during an interval of 0.4P which covers the formation of the 
smallest (second) and the largest (third) maxima in figure 8 (c and d ) .  The small blob 
enters the sinking plume smoothly but the larger blob produces a major distortion 
before it is carried to the side and generates velocities that are 10 % greater. The next 
period-doubling bifurcation, a t  R, x 1.087 x lo5, is followed by solutions of type P8, 
with a further splitting, as shown in figure 8 (  f )  for R, = 1.09 x lo5. This is 
apparently part of a period-doubling cascade which leads to temporal chaos. At 
R, = 1.1  x lo5 the solution is aperiodic, though there is still a tendency for cycles to 
alternate in amplitude. Both the transition to chaos and behaviour in the chaotic 
regime (denoted by C in table 5) are consistent with the properties of one-dimensional 
maps (cf. Knobloch et al. 1986). In  particular we expect to find intervals in R, where 
periodic solutions appear, followed by period-doubling cascades and chaos. We have 
not searched for such windows but a t  R, = 1.3 x lo5 there is a semiperiodic (SP) 
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solution apparently associated with a window of period 8. The periodic windows can 
be interpreted physically as resonances between the mean cycle period and the 
turnover time. 

Chaotic behaviour does not persist, for we find a P4 solution a t  R, = 1.6 x lo5 and 
by R, = 2 x lo5 the solution is of type P1. Apparently there is an inverse cascade of 
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bifurcations and chaos occurs within a 'bubble', as found for thermosolutal 
convection (Knobloch et al. 1986). As R, increases, however, the falling blobs develop 
a different spatial structure and the bifurcation sequence becomes more complicated 
than that of a third- or fifth-order system. Figure 10 illustrates the development of 
the largest blob when R, = 1.6 x lo5. Comparison with figure 9 shows that the blob 
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FIGURE 8. Period-doubling and chaos ( A  = 1.5). (a) N ( t )  and ( b )  limit cycle in (E,N)-phase plane for 
P2 solution with R,  = 1 . 0 6 ~  lo5. (c) N ( t ) ,  ( d )  E ( t )  and (e) limit cycle for P4 solution with R,  = 
1.08 x lo5. (f) Limit cycle for P8 solution with R ,  = 1.09 x lo5. 
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FIGURE 9. Development of non-trivial spatial structure. Isotherms a t  equally spaced intervals 
covering part of the period of the P4 solution at  R, = 1.08 x lo5. Pu'ote the difference between 
successive cold blobs. 

has dctached itself before being swept into the sinking plume, with consequent 
modifications to the flow. 

We have not attempted to identify all subsequent bifurcations ; experience with 
other problems suggests that such details are intricate and may be sensitive to the 
limited resolution of the mesh within the blobs themselves. There are, however, 
periodic, quasi-periodic (QP) and chaotic regimes, as shown in table 5. At R, = 
4 x lo5 there is a P1 solution with a permanent plume a t  x = h (say) modulated 
periodically by a blob that develops and plunges separately downwards at x FZ 0.752, 
as shown in figure 11. Once again there are two cold regions that are spatially 
separated, so that the next blob develops as the first one sinks. Once again this 
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FIGURE 10. Detachment from the boundary layer. Isotherms a t  equally spaced intervals 
covering part of the period of the P4 solution a t  R,  = 1.6 x lo5, after the return from chaos. 

symmetry is broken at a bifurcation around R, x 6.5 x lo5. As R, is increased, cold 
blobs detach themselves and sink closer to the middle of the cell. Figure 12 shows 
both isotherms and streamlines as one blob forms, at x x 0.6A, in the P2 solution a t  
R, = 7 x lo5: the new plume has almost split the cell. 

Our solutions were obtained by increasing R, and using results for a lower 
Rayleigh number to provide initial conditions. At R, = lo6 the P2 solution became 
quasi-periodic and by R, = 1.2 x lo6 behaviour was chaotic. A single fixed plume 
was anchored a t  x = A,  while cold blobs fell irregularly near the centre of the cell 
for as long as the calculation was pursued ; the Nusselt number varied in the range 
11.5 < N < 13.3. At R, = 1.4 x lo6 the solution was still chaotic but after a major 
convulsion, when N rose to 16, there were two plumes, anchored permanently a t  
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FIGURE 11.  Formation of a detached blob. Isotherms at equally spaced intervals covering the 
P1 cycle with R, = 4 x lo5. 

x = 0, A. Between them, blobs formed and detached themselves from the boundary 
layer aperiodically. Similar behaviour was found a t  R, = 1.6 x lo6. 

Viewed as a whole, these numerical experiments cover a transition from steady 
convection with a single roll in the box of width h = 1.5 to unsteady convection with 
two rolls in the box. Much of the complicated time-dependent behaviour is associated 
with a change in spatial symmetry. Owing to the presence of fixed lateral boundaries 
the transition from one to two cells is not simple. In  particular, there seem to be two 
distinct phases, the first involving period-doubling and chaos for R, - lo5 and the 
second involving quasi-periodicity and chaos around R, .y lo6. In order to interpret 
these results we need to consider convection in boxes that contain several rolls. 

6. Multiple rolls 
In  a box of width A ,  subject to the boundary conditions (2.9) and (2.10), the static 

solution becomes unstable to perturbations of the form $ cc sin (max/A), m = 1,2,3,  
. . . , for R > Rim). Two branches of steady solutions bifurcate from the trivial solution 
a t  each point R = Rim), correspondicg to nonlinear convection in rolls of width 
1 = h/m. The two branches correspond to different signs of $ and are related by a 
symmetry. For m odd, one branch (m') has a cold sinking sheet a t  x = A ,  while the 
other (m-) has a sinking sheet at  x = 0;  the two branches are related by the 
symmetry x --f A - x. For m even, one branch (m') has a sinking sheet at x = $A, while 
the other (m-) has sinking sheets a t  x = 0 , h .  Figure 13 shows isotherms and 
streamlines for solutions on the 2+ and 2- branches with h = 1.5. The two branches 
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FIGURE 12. Distortion of the flow by sinking blobs. Isotherms and streamlines at  equally 
spaced intervals covering part of the period of the P2 solution a t  R ,  = 7 x lo5. 

are related by the symmetry x --f x -$A and the assumption that $ is periodic in x. 
The steady solutions along the m+ and m- branches transform into each other under 
the symmetries. 

We are concerned with transitions from one solution branch to another. For R 
sufficiently large we expect any branch of steady solutions to become unstable. New 
branches bifurcating from it may bifurcate themselves and eventually make a 
connection to some other steady branch. The stability properties of the m+ and m- 
branches are identical if m is odd but not if m is even. Then we expect the m- 
solutions to be relatively more stable, since sinking sheets cannot so readily be 
displaced from the lateral boundaries of the box. 
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FIGURE 13. Steady convection with two rolls in a box (R = 3.1 x lo5, A = 1.5, m = 2). 
(a)  Streamlines and ( b )  isotherms for the 2- solution; (c) and (d )  the same for the 2+ solution. 

Solutions with 1 = 1,  1.5 and m = 1 have already been studied in 334 and 5, and we 
have also experimented with h = 0.5, 0.75, keeping N ,  = 64. The relevant values of 
R, are listed in table 3. We first consider solutions with 1 = 0.5. When m = 1 the 
steady branches remain stable a t  least up to R, = lo6; a t  R, = 3.1 x lo5 the value 
of M is 10% higher than for the (unstable) steady solution with 1 = 1,  and a t  R, = 

lo6, M z 6.0. Solutions with m = 2 and h = 1 show more variety. The 2- branch is 
stable a t  least up to R, = 5.1 x lo5 but the 2' branch is already unstable when R, = 

3.1 x lo5. The instability violates the symmetry of the 2+ solution about the plane 
x = 0.5 and therefore develops slowly from the rounding error until it attains a 
significant amplitude. Then the central plume is rapidly displaced towards one of the 
lateral boundaries and there is a transition to a solution with m = 1 ,  which itself 
becomes unstable, yielding intermittent solutions of the type discussed in $4. An 
experiment with m = 3 and h = 1.5 showed similar behaviour a t  R, = 3.1 x lo5. The 
sinking sheet a t  x = 1.5 remained fixed while the sheet a t  x = 0.5 eventually 
migrated to the boundary a t  x = 0, giving a steady 2- solution. As a result of this 
transition the Nusselt number dropped by 9%. 

Next we consider rolls with 1 = 0.75. When m = 1 solutions remain steady a t  least 
until R, = 5.1 x lo5. With m = 2 and h = 1.5 the two branches behave differently. 
We first consider the 2- branch. Stable steady solutions were obtained up to R, = 

5.1 x lo5. Figure 13(a and b )  shows streamlines and isotherms for the solution a t  
R, = 3.1 x lo5. At R, = 9.1 x lo5 there was a slow transition to chaotic behaviour, as 
shown by the variation of N with time in figure 14 (a) .  The final state resembles that 
found after the transition from 1 = 1.5 to 1 = 0.75 at R, = 1.4 x lo6 (cf. 35).  Similar 
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FIQURE 14. Abrupt transitions from one scale to another ( A  = 1.5). (a) N ( t )  for R ,  = 9.1 x lo5, 
showing the transition from the unstable steady 2- solution to a chaotically varying solution with 
sinking plumes a t  both boundaries. ( b )  N ( t )  for R, = 5.1 x lo5, showing the transition from the 2+ 
branch to periodic oscillations about the 1+ branch. 
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FIGURE 15. Sketch showing the relationship between solution branches in a three-dimensional 
space with two order parameters (corresponding to the amplitudes on the solution branches with 
m = 1 and 2) and a control parameter R,. 

behaviour was also obtained as the Rayleigh number was increased up to R, = 
1.8 x lo6. In  all these runs two sinking sheets remain anchored a t  x = 0,1.5,  and there 
are two rolls within the box. The thermal boundary layer is unstable and blobs grow 
and detach themselves in one roll or the other. As they do so the boundary between 
the two rolls migrates laterally to and fro, allowing more complicated motion than 
is possible for a single roll. Finally, there are the 2+ solutions; figure 13(c,d) shows 
a stable steady solution at R, = 3.1 x lo5, with a single sinking sheet a t  x = 0.75 and 
two rolls symmetrical about that plane. As expected, the 2+ branch becomes unstable 
at a lower Rayleigh number than the 2- branch. When R, = 5.1 x lo5 perturbations 
that violate the symmetry about the midplane grow slowly and monotonically from 
the rounding error. N ( t )  is shown in figure 14 ( b ) .  At t x 1.5 there is an abrupt change; 
within one turnover time a sinking sheet forms a t  one of the lateral boundaries and 
there is a rapid transition to solutions with 1 = 1.5, which are periodic (as we saw in 
§5)- 

We are now able to assemble a picture of the bifurcations that occur for h = 1.5. 
From table 3, RC) < Rr) < Rf). The solutions with m = 3 appear last and become 
unstable first; somewhere around R, = lo5 there is a transition to solutions on the 
2- branch. This process resembles the transition from three to two rolls in 
experiments on convection in liquid helium (Libchaber & Maurer 1982). The 
branches with m = 1 and 2 are shown schematically in figure 15. Here some measures 
of the amplitudes of solutions with one roll and two rolls in the box, such as the 
coefficients of terms proportional to sin(nx/h) and sin (27txlh) in the Fourier 
series for $, are plotted against R,. The 2+ solutions become unstable around 
R, = 4 x lo5 and there is a transition to (periodic) solutions on either the 1' or 
1- branch. Steady solutions on the 2- branch remain stable up to about R, = 7 x lo5. 
We conjecture that two successive Hopf bifurcations lead to quasi-periodic behaviour 
and a transition to aperiodicity by R, = 9 x lo5, and there is still a chaotic attractor 
in the neighbourhood of the 2- branch at R, = 1.8 x lo6. Each of the two branches 
with m = 1 undergoes a Hopf bifurcation a t  R, x 7 x lo4. At R, = 9 x lo5 there are 
limit cycles near the branches. Cold blobs fall periodically from the boundary layer 
and the resulting plumes can waggle to and fro. We suspect that these two coupled 
oscillations are responsible for the quasi-periodic behaviour a t  R, = lo6 (which is 
quite unlike that found with h = 1 )  and that the route to chaos is by frequency 
locking and period doubling. Similar behaviour was found experimentally by Dubois 
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FIGURE 16. ( a )  Schematic bifurcation diagram in the three-dimensional space of figure 15 for 
R, < 6 x lo4, showing pitchfork bifurcations leading to the appearance of solution branches with 
m = 1 , 2  and subsequent pitchfork bifurcations a t  which the branches with m = 2 gain stability. 
Corresponding phase portraits in the 1 *-2* phase plane : ( b )  initial appearance of the non-stable 
solution branches with m = 2 ;  (c) stabilization of the m = 2 branches, with the formation of non- 
stable mixed solutions. ( d )  Phase portrait showing behaviour a t  R, = 9 x lo4, after the first Hopf 
bifurcation. ( e )  Phase portrait showing behaviour a t  R, = 5 x lo5, with the stable 2- solution, the 
non-stable 2+ solution and a limit cycle enclosing the unstable solution with m = 1. 

& Berg6 (1980; Berg6 et al. 1984). As R, increases, cold blobs develop nearer to the 
middle of the cell, as can be seen from our results for the if branch in figures 9-12. 
When subsidiary plumes form in the region 0 < x < they are liable to be swept 
towards the left-hand boundary and to remain there. Hence there is a transition from 
m = 1 to the 2- branch a t  R, z 1.3 x 10‘. 

This complicated picture can be summarized as follows. Steady solutions of types 
1 and 2- are unique in having no sinking plumes that are not a t  a boundary. For 
h = 1.5 convection sets in with a pitchfork bifurcation leading to  the two branches 
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with m = 1. As R, is increased, the next pitchfork bifurcation leads to the branches 
with m = 2 but solutions on both these branches are initially unstable. The 
corresponding bifurcation diagram is shown in figure 16 ( a )  and the phase portrait in 
this regime is sketched in figure 16(b) (cf. Knobloch & Guckenheimer 1983). At some 
modest value of R, solutions with m = 2 gain stability through a (subcritical) 
pitchfork bifurcation, which leads to the appearance of saddle points, corresponding 
to the formation of four branches of non-stable mixed solutions. The corresponding 
phase portrait is sketched in figure 16(c). In  this regime (which is not shown in figure 
15 and has not been explored numerically) the four solutions with m = 1 , 2  are all 
stable. A trajectory may be attracted to any one, depending on the initial 
conditions. 

As R, is increased the if and 1- solutions shed limit cycles. The nature of the 
oscillations, with two cold blobs circulating round each cell, implies that the oscil- 
latory bifurcation involves mixed modes linking the solution branches with m = 1 
to those with m = 2 (cf. $4 above). Hence the phase portrait a t  R, = 9 x lo4 can still 
be sketched in a plane containing the four solutions with m = 1,2,  as shown in figure 
16(d). After an interval of chaos the 2+ solution becomes unstable and the projected 
phase portrait a t  R, = 5 x lo5 is sketched in figure 16(e). Next, the 2- solution loses 
stability and finally, for R, 3 1.4 x lo6 all trajectories approach a chaotic attractor 
in the neighbourhood of the unstable 2- solution. 

We have confined our attention to boxes with h < 1.5 when convection first sets 
in with m = 1. The complicated behaviour that we have described is associated with 
the transition from a state with a single sinking sheet a t  one of the lateral boundaries 
to a state with sinking sheets a t  both boundaries. By restricting the values of h we 
were able to  isolate and to recognize successive bifurcations. If h = 2 convection first 
sets in with m = 2 and as h is increased more rolls appear in the box. I n  a large- 
aspect-ratio box thermal boundary layers would still become unstable at high 
Rayleigh numbers, leading to an increase in the number of rolls present. Sinking 
plumes would be less constrained by lateral boundary conditions, so allowing a 
different and richer variety of dynamical behaviour which would be correspondingly 
more difficult to analyse. For similar reasons the behaviour found here will not 
necessarily recur in three-dimensional computations. 

7. Discussion 
Certain aspects of nonlinear convection are adequately represented by low-order 

systems of equations. For instance, the route to chaos by a cascade of period- 
doubling bifurcations (of which an example was given in $5) is familiar from third- 
order systems and can be explained by reference to one-dimensional maps. In  this 
investigation we have tried to exploit dynamical systems theory in order to describe 
time-dependent behaviour in a convecting layer with non-trivial spatial structure. 
We find that instabilities in thermal boundary layers give rise to hot or cold blobs 
that circulate around a cell. After this Hopf bifurcation solutions must be simply 
periodic, so all cold blobs have to be equivalent. This constraint is broken a t  the next 
bifurcation, where the return map has an eigenvalue p = exp (2ni/q). For two blobs 
there is a strong resonance with q = 2 and the constraint can be broken by period- 
doubling or by a second Hopf bifurcation as we have seen. Subsequent bifurcations 
may then lead to chaos. With three blobs (as for example in the case described in $3) 
there is a wider range of possibilities. Period-doubling would imply that any specified 
blob recurred alternately in strong and weak forms, which could happen only if i t  was 
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FIQURE 17. Simplified phase portraits showing the relationship between two fixed points, 
corresponding to rolls with different horizontal scales I, separated by a non-stable saddle point. (a) 
Appearance of a limit cycle about one unstable fixed point, which swells until ( b )  there is a 
homoclinic bifurcation, which might cause chaos, and (c) thereafter only one basin of attraction 
survives. 

thermally brainwashed by diffusion. If its thermal memory persists we might expect 
the symmetry to be broken by a tripling of the period but the strong resonance with 
q = 3 involves a second Hopf bifurcation and quasi-periodicity. Four blobs might 
lose their symmetry by two successive period-doubling bifurcations or by one of the 
more exotic possibilities associated with the strong resonance with q = 4 (Arnol’d 
1983). With- five or more blobs the alternatives are period-doubling or quasi- 
periodicity followed by frequency-locking in the nonlinear regime. Thus the 
bifurcation pattern is affected by geometrical constraints. Similar effects arise with 
instabilities in differentially rotating systems, where the spatial symmetry can more 
easily be controlled (Hide 1958; Rabaud & Couder 1983), though nonlinear 
behaviour is restricted by the circular symmetry of the system (Rand 1982; 
Guckenheimer 1986). 

The spatial structure illustrated here is predominantly associated with changes in 
cell size, and there is an obvious analogy with Taylor vortices (Di Prima & Swinney 
1981; Benjamin & Mullin 1981, 1982; Cliffe & Mullin 1985). For low-amplitude 
convection such transitions can be described by simple evolution equations 
(Knobloch & Guckenheimer 1983). At higher Rayleigh numbers changes are 
produced by cold sheets falling from the upper boundary layer. We have seen that 
these sheets are constrained to behave with surprising regularity even when the 
disturbances are large. 

We have explored transitions to temporal chaos without attempting to explain 
why chaos occurs. In many systems aperiodic oscillations are caused by homoclinic 
bifurcations (e.g. Sparrow 1982; Glendinning 1985; Knobloch et al. 1986) and we 
suspect that the same mechanism operates here too. Suppose that trajectories are 
projected onto a two-dimensional phase plane with two fixed points, corresponding 
to two states of the system (e.g. steady solutions on the 1+ and 2- branches in figure 
16). If trajectories starting from infinity are attracted to one or other of these fixed 
points it follows that there must be a saddle point between them. Now suppose that 
one fixed point undergoes a Hopf bifurcation and sheds a limit cycle, as in figure 
16(d). The resultant phase portrait is sketched in figure 17(a). As the stability 
parameter R, is increased the limit cycle swells until i t  becomes homoclinic to the 
saddle point, as shown in figure 17(b). Under certain conditions we expect to find 
chaotic behaviour in the neighbourhood of the homoclinic bifurcation a t  which the 
periodic orbit is destroyed. Then we would observe the following states as R, passed 
through successive bifurcation values : (i) two possible stable steady solutions, (ii) a 
stable periodic solution and a stable steady solution, (iii) chaotic oscillations about 
the first (unstable) solution and a stable steady solution, (iv) a single stable solution 
as in figure 17(c). Such behaviour is possible whenever there is a discontinuous 
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transition from one planform to another. In $5 we described the transition to chaos for 
R, z 1.1 x lo5. The interval of chaos was approached from either side by cascades of 
period-doubling bifurcations and this bubble structure is consistent with the simple 
picture outlined above. Low-order systems show an infinite sequence of such bubbles 
as the homoclinic orbit is approached. Here the sequence was apparently interrupted 
owing to the complicated spatial stmcture. More generally, therefore, we should 
imagine trajectories in a phase space with a t  least four dimensions, with separate 
basins of attraction for different types of solution (which may simultaneously be 
chaotic). As R, is increased more and more solution branches bifurcate from the 
trivial solution and the structure of phase space becomes difficult to visualize. 
Nevertheless, we conjecture that there exist many basins of attraction separated by 
non-stable fixed points, with possibilities of chaos associated with numerous 
homoclinic bifurcations. 

In conclusion, we may speculate on the behaviour of other, less artificial, fluid 
systems in which spatial modes with smaller and smaller scales are excited as some 
stability parameter is increased. It has become fashionable to contrast two pictures 
of turbulence as though they were mutually exclusive. In one (due to Landau and 
Hopfj many different bifurcations are supposed to occur sequentially, generating 
extremely complicated quasi-periodic motion ; in the other (due to Ruelle and 
Takens) everything is explained by a rapid transition to chaos after a few 
bifurcations (Hao 1984). Our results suggest that these two pictures need to be 
combined. Many independent spatial modes, with their associated bifurcations, are 
needed to describe the flow and there may be many different routes to chaos. Any 
chaotic attractor is bound to have a complicated structure which can only be 
described statistically, for example by discovering how its fractal dimension depends 
on the stability parameter. 
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